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Bayesian Nonparametrics: Why?

o A tutorial!! Daunting task: more qualified people have already
done much better! And we have less than an hour! 😰

Bayesians believe that all inference and more is Bayesian territory. 

So, it is natural that a Bayesian should explore non-parametrics
and other infinite-dimensional problems.

However, putting a prior, which is always a delicate and difficult 
exercise in Bayesian analysis, poses special conceptual, 
mathematical, and practical difficulties in infinite-dimensional 
problems. 

Can one really have a subjective prior based on knowledge and
belief, in an infinite-dimensional space? 

Even if one settles for a largely non-subjective prior, it is 
mathematically difficult to construct prior distributions on such 
sets as the space of all distribution functions or the space of all 
probability density functions and ensure that they have large 
support, which is a minimum requirement because a largely non-
subjective prior should not put too much mass on a small set.

J.K. Ghosh & R.V. Ramamoorthi (2003), 
Bayesian Nonparametics, Springer
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Bayesian Nonparametrics: What?

o At its essence, a Bayesian non-parametric approach can be
broadly described by models that put a prior on an
infinite-dimensional object.
In the literature, one can see the term applied to:

👉 Functional data analysis/functional regression:

Yi = f (Xi) + εi ,

e.g. by using Gaussian processes

👉 Bayesian Additive Regression Trees (BART): flexible modeling of
the relationships between covariates and outcomes

👉 Density Estimation: provide the flexibility necessary to analyze
complex data beyond simple parametric assumptions:

Dirichlet Processes (DP)
Polya Tree priors
and their generalizations (Dependent DP, Normalized
Random Measures...)
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Bayesian Nonparametrics: What?

✏️ Parametric models make restrictive assumptions about the
data-generating mechanism (e.g. the data are generated from a
Normal distribution)

⚠️ If the data do not follow the assumed DGM (they rarely do), the
distributional assumption may cause serious biases in the
inference

👉 A parametric model X |θ ∼ pθ for θ ∈ Θ ⊂ Rd with a prior
specification θ ∼ π can be also described as follows:

X |p ∼ p, p ∼ Π

where Π is a prior distribution on the set of all possible densities
with the property that Π({pθ : θ ∈ Θ}) = 1.

‼️ Thus parametric modeling insists on a prior that assigns
probability one to a very small subset of all densities.
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There are many different resources to learn BNP:

Foundational and 
Theoretical Aspects

Large sample behavior of the posterior 
distribution: understanding the behavior of 
posteriors is critical to selecting priors that work
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Bayesian Nonparametrics in Brain Imaging

There is an increasing recognition that brain 
functioning is heterogeneous and varies greatly 
both within and between individuals:

• differences in activation to different stimuli

• differences in connectivity to different stimuli

• the different brain activity patterns may be 
associated to a clinical outcome or different 
behaviors (e.g., large brain responses to food-
related cues predict cue-induced eating, 
Versace et al, 2019)

A Bayesian Nonparametric Approach can be used to account 
for such heterogeneity  



Capturing within-subject heterogeneity



Capturing Activation patterns in fMRI data

Source:(�www.anc.ed.ac.uk((

Source:(��photos.uc.wisc.edu((

* Indirect measure of brain activity as changes in blood flow,
typically collected during a sensorimotor task.

o Observed data * time series of the blood oxygenation level
dependent (BOLD) response, at each voxel in the brain.



Simple model for Activation Maps

Yv = µv + εv , εv ∼ NT (0, σ)

Yv , BOLD response summarized at the v th voxel in a
subject

µv , random effect to capture activations at different voxels

εv , is an error term.
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Activation maps

To fix ideas, we can think that the response is characterized by
different levels of activations at different voxels:

👉 We can think at a mixture model to describe the responses:

f (yν |σ) =
∫

N (yν ;µν , σ)dp̃(µν)
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Mixture models for the activation maps

We can rewrite the previous model in hierarchical form as:

Yν | µν
ind∼ N (Yν ;µν) , ν = 1, . . . ,V

µν | p̃ iid∼ p̃

for some choice of the mixing distribution p̃.

o Desiderata:

¬ The model should be tractable, i.e., it should be easily
computed, either analytically or through simulations.

­ The model should be rich, in the sense of having a large enough
support.

® The hyperparameters in the model should be easily
interpretable.

(Ferguson, 1973)
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Mixture models for the activation maps

o One natural choice is to assume:

p̃ =

K∑
k=1

πk δµ∗
k

where 1 ≤ K ≤ ∞ , πk are weights (
∑K

k=1 πk = 1) and the µ∗
k ’s

can be thought of as “centroids" of the set of responses

o Ishwaran and James (2001) propose a stick-breaking prior:

µ∗
k

iid∼ G0 👉 E(p̃(A)) = G0(A) (centering distribution).

π1 = V1 and πk = (1− V1) (1− V2) · · · (1− Vk−1)Vk , k ≥ 2

with Vk
ind∼ Beta (ak ,bk ).

If K < ∞, VK = 1 ñ
∑K

k=1 πk = 1.

😉 “The Pony Process"

https://www.youtube.com/watch?v=bWJ7LB6UUPM
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Stick-breaking priors

The stick-breaking formulation for the weights generalizes the
Sethuraman’s (1994) construction of the weights of the Dirichlet
Process. Indeed, setting K = ∞,

👉 ak = 1 and bk = α

ñ DP(α,G0) (Ferguson, 1973; Sethuraman, 1994)

👉 ak = 1− a,bk = b + ka, with discount parameter 0 ≤ a < 1 and
strength parameter b > −a

ñ PY(a,b,G0) (Pitman and Yor, 1997)

The discount parameter plays a role on the induced
distribution of the number of clusters in the data, the larger
being a the flatter and less informative the prior



Mixture models for the activation maps

👉 Based on the priors above, the model for the data becomes

yν
iid∼

K∑
k=1

πk f (yν |µ∗
k , σ)

that is, a univariate location PY mixture model (Ferguson, 1983)

We can assume G0 ≡ N(m0, σ0), and σ ∼ π(σ), e.g.
σ2 ∼ IGa (a0,b0).

We can further assume m0 | σ2
0 ∼ N

(
m1, σ

2
0/k1

)
and

σ2
0 ∼ IGa (a1,b1).



Posterior Inference

Two major types of MCMC algorithms have been proposed:

🚂 Marginal Samplers (Escobar and West, 1995 and Müller et
al., 1996) Based on the Polya-Urn scheme of Blackwell and
MacQueen (1973)

ñ Computationally slow for high-dimensional data

🚄 Conditional Samplers:

¬ Blocked Gibbs Sampler (Ishwaran and James, 2001) Based
on finite-dimensional truncations

ñ the error in approximating the infinite-dimensional posterior
can be hard to control for many models (Griffin, 2016)

­ Slice Sampler (Walker 2007; Kalli, Griffin, and Walker 2011),
uses a sequence of auxiliary random variables to describe
the non-empty mixture components

💻 DPpackage (A. Jara, long gone in R) 🙏

💻 BNPmix (Corradin, R., Canale, A., and Nipoti, B. 2021) (C++, Rcpp)
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Mixture models are well-suited for density estimation (describing heterogeneity).

Caution on inferences about the number of components:

Induced Posterior on the number of components is inconsistent (Miller and Harrison, 2014)
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Ill-posed problem ? Finding the number of clusters is essentially a decision problem



Decision theoretic approach for cluster inference

❓ What is an appropriate point estimate of the clustering structure
based on the posterior distribution?

❓ What is an appropriate loss function on the space of clusterings?

o Let L(c, ĉ) be a loss function which measures the loss of
estimating the true clustering c with ĉ.

o Since the true clustering is unknown, and the posterior weights
the possible clustering configurations, the optimal cluster
configurations can be obtained as

c∗ = argmin
ĉ

E [L(c, ĉ) | y ] = argmin
ĉ

∑
c

L(c, ĉ)p (c | y)



Loss functions for partitions

o Binder’s loss (1978) is invariant to permutations of the data
points indices and cluster labels

It penalizes the two errors of allocating two observations to
different clusters when they should be in the same cluster or
allocating them to the same cluster when they should be in
different clusters:

B(c, ĉ) =
∑
n<n′

l1 1 (cn = cn′) 1
(
ĉn 6= ĉn′

)
+l2 1 (cn 6= cn′) 1

(
ĉn = ĉn′

)
If the errors have the same penalty, then it results in a quadratic
function of the counts in the two clusters penalized by
disagreements between the true and estimated clusterings.



Loss functions for partitions

o The variation of information loss (VI) has been proposed by
Wade and Ghahramani (2018) and Meilă (2007)

It measures the amount of information lost and gained in
changing from one clustering partition to another

VI(c, ĉ) = H(c) + H(ĉ)− 2I(c, ĉ)

where H(·) measures the entropy of a partition (zero if there is
only one cluster) and I(·) is a measure of mutual information
between the two clustering (sort of distance between the two
clustering structures)

WG (2018) show how the VI is able to better represent the idea
of closest set of partitions to a true partition

ñ They obtain point estimates and credible balls to reflect
uncertainty on the partitions.

Implemented in the packages mcclust and BNPmix.



Bayesian NP mixtures for screening in large-scale testing



Light-sheet fluorescence microscopy (LSFM)

The light-sheet fluorescence microscopy dataset 
• Fourteen mice were individually housed in the dark 
for 24 hours to establish baseline visual activity 
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Light-sheet fluorescence microscopy (LSFM)

The light-sheet fluorescence microscopy dataset 
• Fourteen mice were individually housed in the dark 
for 24 hours to establish baseline visual activity 


• Mice were then transferred into a new cage 
exposed to ambient light  


• The brains of six mice were examined 0-15 minutes 
(i.e., no light) after light exposure to serve as the 
baseline group


• The brains of another eight mice were examined 
30-120 minutes after light exposure, within the 
window of Npas4 protein up-regulation 
(Ramamoorthi et al., 2011) 



Light-sheet fluorescence microscopy (LSFM)

The light-sheet fluorescence microscopy dataset 

• The light-sheet fluorescence microscopy imaging techniques allows the detection of activated 
cells at high resolution in vivo in the whole-brain fo the mouse. 



Light-sheet fluorescence microscopy (LSFM)

CASE GROUP: LIGHT-EXPOSEDCONTROL GROUP: DARKNESS

• “Activation” seems to be linked to both fluorescence intensity and frequency of neurons



Light-sheet fluorescence microscopy (LSFM)

The light-sheet fluorescence microscopy dataset 
•GOAL of the study: 


• Assess differentially activated regions by comparing the 
baseline and light-exposed groups 


• The activation is measured in terms of Npas4 expression 
(we will refer to this as fluorescence)


• We expect that light exposure induces widespread, 
visually evoked activity in terms of fluorescence intensity 

• Data are pre-processed eventually organized into 281 
brain regions of interest and z-scores 
 
 
              

<latexit sha1_base64="5SX4fnPKHMYjqCoCf2uXVFOwilA="></latexit>

Z⌫ = �⌫ + "⌫ , "⌫ ⇠ NT (0,�)



Light-sheet fluorescence microscopy (LSFM)

The light-sheet fluorescence microscopy dataset 
•GOAL of the study: 


• Assess differentially activated regions by comparing the 
baseline and light-exposed groups 


• The activation is measured in terms of Npas4 expression 
(we will refer to this as fluorescence) 
 
 
 
 
BH discovers 142 regions (50%) too liberal! 
 
 
The local FDR method (Efron, 2004) flags only 38 brain 
regions as relevant, however missing many regions known 
to be associated with the visual task.



Binary testing framework



👉 Continuous scale mixtures of Gaussians (Carvalho et al, 2010,
Polson et al 2012) do not lead to an immediate “selection" of
relevant parameters

βν | τ , λν ∼ N1

(
0, τ2 · λ2

ν

)
with

τ ∼ g a global shrinkage parameter

and

λν ∼ hν a local shrinkage parameter

However, the decisions on the “significance" of the β’s
coefficients are typically dichotomized (e.g., based on 90%
credible intervals or shrinkage factor)

or other decision theoretic-based procedures (Chandra, Mueller,
Sarkar, 2022+; Lee et al, 2022+)



Discrete mixture of continuous scale mixtures

o We can consider a mixture:

βν | τ,λK ,π, σ
2 ∼

K∑
k=1

πk φ
(
βν ; 0, σ

2 · τ2 · λ2
k
)

where λ2
k is a mixture shrinkage component.

The smallest variance component is typically such that τλ(1) ≈ 0
and represents the null distribution

The other components can be sorted according to the
magnitudes of λk ’s.
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We compare the findings with other well-known methods: Local-FDR
(IFDR), Horseshoe prior (HS), Spike-and-Slab (SnS), and
Benjamini-Hochberg (BH)

The HSM model mediates between the more conservative IFDR and
SnS methods and the numerous discoveries of the BH and HS models.
Denti et al (2022+), A Horseshoe mixture model for Bayesian screening
with an application to light sheet fluorescence microscopy in brain
imaging, Submitted. https://arxiv.org/abs/2106.08281 (

https://arxiv.org/abs/2106.08281


Capturing Between-subjects heterogeneity



Hierarchical Mixture Models

Hierarchical mixtures are widely used in Bayesian Nonparametrics to
cluster together observations from different groups (Camerlenghi et al,
2019; Bassetti et al, 2020; Argiento et al, 2019)

Basic Idea: Two-level mixtures: a mixture is used to cluster subjects
showing similar brain patterns; a lower-level mixture captures individual
specific features

Subject(1(
Subject(3(

Subject(4( Subject(2(

Subject(5(

Zhang, G., Versace, Engelmann, Vannucci, Annals of Applied Statistics, 2016
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Visual illustration of the model

Yiv = Xivβiv + εiv , εiv ∼ NT (0,Σiv )

o Objective: capture activation patterns in response to a stimulus
within and across subjects.
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Hierarchical model

* More specifically, we use a Hierarchical Dirichlet Process (HDP,
Teh et al, 2006) to define a multi-subject spike-and-slab
nonparametric prior,

βiv |γiv ,Gi ∼ γiv Gi + (1− γiv )δ0

Gi is a subject-specific probability distribution that induces
clustering of the β′

v s within subjects

The Gi are built by “picking" hierarchically the atoms in their
support from a common underlying (discrete) distribution

Gi |η1,G0 ∼ DP(η1,G0)

G0|η2,P0 ∼ DP(η2,P0)

P0 = N(0, τ)

I η1, η2: concentration parameters, controlling the variability
P0: base measure, generating the global components
which are shared within and across subjects
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Sexual Desire in Cancer Survivors Study

o Real fMRI data collected by Versace’s lab (MDACC):

Data Dimension: 27 subjects, 286 time points, 2 slices of
interest, 64× 64 voxels per slice

Occipital Slice  
(y = -60 mm)  

Frontal Slice 
(y = +38 mm) y(=(860(mm( y(=(+2(mm( y(=(+38(mm(

Posterior( Anterior(
Event-related design

* Goal: detecting (differential) brain activity in response to
visual scenes: emotional pictures ( vs neutral pictures)



Results of subject-level clustering
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Cluster 2 All Subjects 

Two groups of subjects characterized by different levels of
activations

* Subjects who show decreased responses to certain
emotional pictures may show lower reward sensitivity in
surveys’ responses (e.g., higher dissatisfaction, affecting
mechanisms connected to reward processing)



Capturing Distributional heterogeneity



Fluorescent Microscopy data

ñ The Hierarchical Dirichlet Process assumes subject-specific
distributions but does not allow clustering distributions

+ Study how individual neurons react to stimulation and how they
encode information by deconvolving the calcium traces and
identify the precise spike times of the observable neurons
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Effect of Stimuli

Usually, the experiment involves multiple stimuli (e.g. visual stimuli, or odors):

the interest is to understand how the different types of stimuli affect the
neuronal activity ñ investigate similarities and differences in the
distribution of spikes over time and conditions.
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The distribution of the spikes can be very similar across the conditions of an
experiment + Clustering



Capturing Distributional heterogeneity

m Approaches for clustering distributional features directly are
sparse.

m Clustering methods in symbolic statistics (Irpino and Verde,
2015; Batagelj et al., 2015) do not allow for a probabilistic
assessment of cluster uncertainty.

m The Nested Dirichlet process (nDP, Rodriguez et al, 2008) and
its extensions have been widely employed to identify
distributional groups in Bayesian Nonparametric model-based
approaches.

m The nDP leads to a two-layered clustering: first, it allows
grouping together similar distributions (distributional clustering),
and then it clusters similar observations within each
distributional cluster (observational clustering).
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Group structure

We are interested in characterizing the neural activity under different
experimental conditions.

We introduce a categorical variable gt taking values in {1, . . . , J}, with
J the number of different experimental settings.

gt=1 gt=2 gt=3 gt=2 gt=1 gt=4 gt=2 gt=1
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For each t = 1, . . . ,T , gt = j indicates that the neural activity at time t
is observed under condition j .
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Model for the calcium dynamics

A popular model1 to relate the observed trace yt to the
underlying true calcium concentration ct , and to the neuronal
activity At :

yt = b + ct + εt εt ∼ N(0, σ2)

ct = γ ct−1 + At + ωt ωt ∼ N(0, τ2)

for t = 1, . . . ,T ; with b baseline level, εt measurement error.
In absence of neuronal activity: At = 0 and the calcium
level follows a AR(1) process controlled by the parameter
γ;
when a spike occurs: At > 0 and the concentration
increases instantaneously with the spike amplitude At .

1Vogelstein et al. (2010). Fast nonnegative deconvolution for spike train inference
from population calcium imaging. Journal of Neurophysiology 104, 3691–3704



Nested mixture model for the neuronal activity

To allow the response to vary according to the condition, we assume
that the spikes At come from stimulus-specific distributions: for
j = 1, . . . , J

At | gt = j ,Gj ∼ Gj .

To model the Gj ’s we adopt a Bayesian nested finite mixture model:

nested structure → reconstruct the distribution within each
experimental condition + borrow information between
groups (distributional clustering)

mixture formulation → cluster the At across and within distributions
ñ discover similarities in the activation response to
different stimuli.

The model allows to represent the data through two-layers: at the first
level clusters of distributions across conditions, and at the second
level a convenient representation of the distributions via models
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Degeneracy of the nested DP

Camerlenghi et al (2019) have recently proved that the inference
obtained using the nDP may be affected by a degeneracy property:

ñ If two distributions share even only one atom in their support, the
two distributions are automatically assigned to the same cluster.

More precisely, the partially exchangeable partition probability
function (pEPPF), i.e. the function which describes the probability
of each clustering allocation for partially exchangeable data
modeled with a nDP, collapses to a fully exchangeable case when
ties are present among the observational atoms.

The problem persists with nDP mixture model formulations



Proposed Solutions

m Camerlenghi et al (2019) propose a class of latent nested
processes, which relies on estimating a latent mixture of shared
and idiosyncratic processes ñ very computationally complex,
only small datasets with few groups.

m Beraha et al (2021) propose a variation of the hierarchical DP,
where the baseline distribution is itself a mixture of a DP and a
non-atomic measure (semi-HDP). They further combine the
semi-HDP prior with a random partition model that allows
different populations to be grouped in clusters that are internally
homogeneous, i.e. arising from the same distribution.

m Denti, Camerlenghi, Guindani & Mira (2022+) show that the
degeneracy is avoided if the prior explicitly models commonality
of atoms between groups.

m Lijoi, Pruenster, Rebaudo (2022+) move this idea further along
by essentially combining the NDP and the HDP into a hidden
hierarchical Dirichlet Process.
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Visual idea of the Common Atom Model



Nested mixture model for the neuronal activity

For computational efficiency (long time series), one can employ the
generalized mixtures of finite mixtures (gMFM) of Frühwirth-Schnatter
et al. (BA, 2021) where the nested structure is based on the common
atom model:

At | gt = j,Gj ∼ Gj .

G1, . . . ,GJ | Q ∼ Q, Q =

K∑
k=1

πk δG∗
k

where G∗
k are distributions (identifying clusters of distributions across

conditions/experimental settings)

More specifically, we assume:

π1, ..., πK | K , α ∼ DirK (
α

K
, ...,

α

K
)

K − 1 ∼ beta-negative-binomial

α ∼ F

(Frühwirth-Schnatter et al., 2021)
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Nested mixture model on the neuronal activity

Also for the distributional atoms G∗
k , for k = 1, . . . ,K we assume

a mixture

G∗
k =

L∑
l=1

ωl,k δA∗
l

where the set of atoms A∗ is common across the distributions
G∗

1, . . . ,G∗
K and they are obtained as i.i.d. draws from a base

measure G0.

+ The distributions G∗
K differ by the weight given to each atom

(some weights ωl,k can be zero for some k)



Allen Brain Observatory2 data
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4 experimental conditions:
3 stimuli of increasing complexity (static grating, natural
scene, natural movie)
period of spontaneous activity (absence of stimuli)

6Allen Institute for Brain Science (2016). Allen brain observatory.
http://observatory.brain-map.org/visualcoding.
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D’Angelo et al (2022+) Bayesian nonparametric analysis for the detection of spikes in
noisy calcium imaging data, Biomettics, to appear
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Conclusions

m We have discussed old and recent modeling frameworks in BNP with an
emphasis on applications to neuroimaging.

m What did I leave out?

m What if we have information the partitions?

Smith and Allenby (2020), Paganin et al (2021), Dhal, Warr
et al (2022+)

m Dependent random measures (MacEachern, 2000; Quintana et al,
2022)

e.g., adding covariates/clustering dependent on external
stimuli/information about the environment.

m Computational Challenges

Dimension reduction
Approximate computational methods
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